List of Publications

Witold Szymanski

Ordered by date

  1. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells.
    Alashkar Alhamwe, B., Ponath, V., Alhamdan, F., Dörsam, B., Landwehr, C., Linder, M., Pauck, K., Miethe, S., Garn, H., Finkernagel, F., Brichkina, A., Lauth, M., Tiwari, D.K., Buchholz, M., Bachurski, D., Elmshäuser, S., Nist, A., Stiewe, T., Pogge von Strandmann, L., Szymański, W., Beutgen, V., Graumann, J., Teply-Szymanski, J., Keber, C., Denkert, C., Jacob, R., Preußer, C., and Pogge von Strandmann, E.
    Cellular & Molecular Immunology
    2024. 21(8), 918-931
    DOI: 10.1038/s41423-024-01195-1

  2. Phosphoproteomics Reveals Selective Regulation of Signaling Pathways by Lysophosphatidic Acid Species in Macrophages.
    Dietze, R., Szymanski, W., Ojasalu, K., Finkernagel, F., Nist, A., Stiewe, T., Graumann, J., and Müller, R.
    Cells
    2024. 13(10), 810
    DOI: 10.3390/cells13100810

  3. Targeting the High-Density Lipoprotein Proteome for the Treatment of Post-Acute Sequelae of SARS-CoV-2.
    Grote, K., Schaefer, A., Soufi, M., Ruppert, V., Linne, U., Bhagwat, A., Szymanski, W., Graumann, J., Gercke, Y., Aldudak, S., Hilfiker-Kleiner, D., Schieffer, E., and Schieffer, B.
    International Journal of Molecular Sciences
    2024. 25(8), 4522
    DOI: 10.3390/ijms25084522

  4. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system.
    Wimmi, S., Fleck, M., Helbig, C., Brianceau, C., Langenfeld, K., Szymanski, W.G., Angelidou, G., Glatter, T., and Diepold, A.
    Molecular Microbiology
    2024. 121(2), 304-323
    DOI: 10.1111/mmi.15223

  5. Impaired Plakophilin-2 in obesity breaks cell cycle dynamics to breed adipocyte senescence.
    Lluch, A., Latorre, J., Serena-Maione, A., Espadas, I., Caballano-Infantes, E., Moreno-Navarrete, J.M., Oliveras-Cañellas, N., Ricart, W., Malagón, M.M., Martin-Montalvo, A., Birchmeier, W., Szymanski, W., Graumann, J., Gómez-Serrano, M., Sommariva, E., Fernández-Real, J.M., and Ortega, F.J.
    Nature Communications
    2023. 14(1), 5106
    DOI: 10.1038/s41467-023-40596-0

  6. Menstrual blood-derived mesenchymal stromal cells: impact of preconditioning on the cargo of extracellular vesicles as potential therapeutics.
    de Pedro, M.Á., López, E., González-Nuño, F.M., Pulido, M., Álvarez, V., Marchena, A.M., Preußer, C., Szymański, W., Pogge von Strandmann, E., Graumann, J., Sánchez-Margallo, F.M., Casado, J.G., and Gómez-Serrano, M.
    Stem Cell Research & Therapy
    2023. 14(1), 1-20
    DOI: 10.1186/s13287-023-03413-5

  7. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo.
    Nattermann, M., Wenk, S., Pfister, P., He, H., Lee, S.H., Szymanski, W., Guntermann, N., Zhu, F., Nickel, L., Wallner, C., Zarzycki, J., Paczia, N., Gaißert, N., Franciò, G., Leitner, W., Gonzalez, R., and Erb, T.J.
    Nature Communications
    2023. 14(1), 2682
    DOI: 10.1038/s41467-023-38072-w

  8. An Easy-to-Use Plasmid Toolset for Efficient Generation and Benchmarking of Synthetic Small RNAs in Bacteria.
    Köbel, T.S., Melo Palhares, R., Fromm, C., Szymanski, W., Angelidou, G., Glatter, T., Georg, J., Berghoff, B.A., and Schindler, D.
    ACS Synthetic Biology
    2022. 11(9), 2989-3003
    DOI: 10.1021/acssynbio.2c00164

  9. Isolation of native EVs from primary biofluids—Free-flow electrophoresis as a novel approach to purify ascites-derived EVs.
    Preußer, C., Stelter, K., Tertel, T., Linder, M., Helmprobst, F., Szymanski, W., Graumann, J., Giebel, B., Reinartz, S., Müller, R., Weber, G., and von Strandmann, E.P.
    Journal of Extracellular Biology
    2022. 1(12), e71
    DOI: 10.1002/jex2.71

  10. Deciphering the physiological response of Escherichia coli under high ATP demand.
    Boecker, S., Slaviero, G., Schramm, T., Szymanski, W., Steuer, R., Link, H., and Klamt, S.
    Molecular Systems Biology
    2021. 17(12)
    DOI: 10.15252/msb.202110504

  11. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice.
    Pessoa Rodrigues, C., Chatterjee, A., Wiese, M., Stehle, T., Szymanski, W., Shvedunova, M., and Akhtar, A.
    Nature Communications
    2021. 12(1), 6212
    DOI: 10.1038/s41467-021-26277-w

  12. Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco.
    Malinova, I., Zupok, A., Massouh, A., Schöttler, M.A., Meyer, E.H., Yaneva-Roder, L., Szymanski, W., Rößner, M., Ruf, S., Bock, R., and Greiner, S.
    The Plant Cell
    2021. 33(5), 1682-1705
    DOI: 10.1093/plcell/koab050

  13. The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants.
    Kesten, C., Wallmann, A., Schneider, R., McFarlane, H.E., Diehl, A., Khan, G.A., van Rossum, B., Lampugnani, E.R., Szymanski, W.G., Cremer, N., Schmieder, P., Ford, K.L., Seiter, F., Heazlewood, J.L., Sanchez-Rodriguez, C., Oschkinat, H., and Persson, S.
    Nature Communications
    2019. 10(1), 857
    DOI: 10.1038/s41467-019-08780-3

  14. The NSL complex maintains nuclear architecture stability via lamin A/C acetylation.
    Karoutas, A., Szymanski, W., Rausch, T., Guhathakurta, S., Rog-Zielinska, E.A., Peyronnet, R., Seyfferth, J., Chen, H., de Leeuw, R., Herquel, B., Kimura, H., Mittler, G., Kohl, P., Medalia, O., Korbel, J.O., and Akhtar, A.
    Nature Cell Biology
    2019. 21(10), 1248-1260
    DOI: 10.1038/s41556-019-0397-z

  15. De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation.
    DDD Study, D.S., Basilicata, M.F., Bruel, A., Semplicio, G., Valsecchi, C.I.K., Aktaş, T., Duffourd, Y., Rumpf, T., Morton, J., Bache, I., Szymanski, W.G., Gilissen, C., Vanakker, O., Õunap, K., Mittler, G., van der Burgt, I., El Chehadeh, S., Cho, M.T., Pfundt, R., Tan, T.Y., Kirchhoff, M., Menten, B., Vergult, S., Lindstrom, K., Reis, A., Johnson, D.S., Fryer, A., McKay, V., Fisher, R.B., Thauvin-Robinet, C., Francis, D., Roscioli, T., Pajusalu, S., Radtke, K., Ganesh, J., Brunner, H.G., Wilson, M., Faivre, L., Kalscheuer, V.M., Thevenon, J., and Akhtar, A.
    Nature Genetics
    2018. 50(10), 1442-1451
    DOI: 10.1038/s41588-018-0220-y

  16. Cytoskeletal Components Define Protein Location to Membrane Microdomains.
    Szymanski, W.G., Zauber, H., Erban, A., Gorka, M., Wu, X.N., and Schulze, W.X.
    Molecular & Cellular Proteomics
    2015. 14(9), 2493-2509
    DOI: 10.1074/mcp.M114.046904

  17. Plasma Membranes Are Subcompartmentalized into a Plethora of Coexisting and Diverse Microdomains in Arabidopsis and Nicotiana benthamiana.
    Jarsch, I.K., Konrad, S.S., Stratil, T.F., Urbanus, S.L., Szymanski, W., Braun, P., Braun, K., and Ott, T.
    The Plant Cell
    2014. 26(4), 1698-1711
    DOI: 10.1105/tpc.114.124446

  18. Unraveling Sterol-dependent Membrane Phenotypes by Analysis of Protein Abundance-ratio Distributions in Different Membrane Fractions Under Biochemical and Endogenous Sterol Depletion.
    Zauber, H., Szymanski, W., and Schulze, W.X.
    Molecular & Cellular Proteomics
    2013. 12(12), 3732-3743
    DOI: 10.1074/mcp.M113.029447

  19. Metabolic Labeling and Membrane Fractionation for Comparative Proteomic Analysis of Arabidopsis thaliana Suspension Cell Cultures.
    Szymanski, W.G., Kierszniowska, S., and Schulze, W.X.
    Journal of Visualized Experiments
    2013. Online ahead of print
    DOI: 10.3791/50535